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Abstract

As biometric applications are fielded to serve large pop-
ulation groups, issues of performance differences between
individual sub-groups are becoming increasingly impor-
tant. In this paper we examine cases where we believe race
is one such factor. We look in particular at two forms of
problem; facial classification and image synthesis. We take
the novel approach of considering race as a boundary for
transfer learning in both the task (facial classification) and
the domain (synthesis over distinct datasets). We demon-
strate a series of techniques to improve transfer learning of
facial classification; outperforming similar models trained
in the target’s own domain. We conduct a study to eval-
uate the performance drop of Generative Adversarial Net-
works trained to conduct image synthesis, in this process,
we produce a new annotation for the Celeb-A dataset by
race. These networks are trained solely on one race and
tested on another - demonstrating the subsets of the CelebA
to be distinct domains for this task.

1. Introduction
The adoption of machine learning technologies for com-

mercial applications has occurred at a breathtaking rate.
Nowhere has this been more clear than within the computer
vision community, where Convolutional Neural Networks
(CNNs) have revolutionised image classification [20, 17]
and Generative Adverserial Networks (GANs) have pushed
image synthesis to photorealistic levels [24, 12]. Such mod-
els require an enormous amount of data to be trained ro-
bustly and are employed within services for large global
user bases.

However, with a reliance on diverse data, models are
unable to produce distributions which encompass all user
cases - effectively restricting the audiences for these tech-
nologies. Recent attention has been brought to the inability
of technologies to work well on people of certain races, for
example; Asian faces are consistently classified as blinking
[19], people of colour are whitewashed by filters [8] and

Black people are mislabelled as gorillas [2]. Whilst these
are reported, we find limited studies by the research com-
munity to document such phenomena.

A common response to such reports, is to suggest models
should be trained on more representative data, however such
data may not exist. Even as datasets continue to grow in
size, this only acts to exaggerate existing bias’ within data.
Furthermore, whilst selective sub-sampling of large datasets
could solve this problem, we demonstrate the difficulties in
this paper.

To that end, we reconsider these phenomena as failings
of transfer learning: that models are unable to generalise
well beyond race in biometric tasks.

Transfer learning considers the application of models
which form a distribution of a domain/task and then are
applied to another distinct domain/task. In the case of the
failing technologies above, the transfer domain boundary is
race, in which our models are trained on a source domain
DS , predominately of race X , and then applied to a target
domain, DT of race Y .

In this paper we explore if race is a distinct transfer
boundary, that is to say, a distinct characteristic of a dataset
over which it is difficult to generalise. We quantify this
claim through two tasks, facial classification and synthe-
sis. For classification, we consider a series of datasets an-
notated by race and attempt to predict race across domains.
From this task, we demonstrate the difficulty in classify-
ing by race and, by proxy, the difficulty in selectively sub-
sampling a racially diverse subset from larger datasets.

We also consider facial synthesis, the task of combin-
ing and augmenting existing facial images and artistic styles
through some semantic domain. For example, a model can
receive an image of a red haired women and generate a
photo-realistic image of the same individual with blue hair -
such tasks require a strong understanding of the identity and
the features of the individual. From this task, we substan-
tiate the problems with this specific architecture - adding
weight to the claims that this technology is susceptible to
bias against minority groups.

The remainder of this paper is organised as follows: In



Section 2, we attempt to apply racial classification over
datasets and incorporate transfer learning techniques to im-
prove accuracy. In Section 3, we examine the effectiveness
of GANs to produce photo-realistic images over racially
distinct domains. We discuss our findings in Section 4 and
suggest further work in Section 5.

2. Racial Classification
Racial classification is a diverse topic, with approaches

from classical methods to machine learning [7]. A large
body of research exists segmenting facial images by Asian
vs Non-Asian labels [14, 26, 16] and finer Asian distinctions
[23]. Fue et al provide a full survey of techniques [4].

These examples choose train and test sets from the same
domain, where subjects are taken in similar poses, light-
ening and occlusion. We explore how such a classifier
performs when applied cross domain (e.g. to a different
image set), and ask ’Do models learn a generalised con-
cept of race?’. Referencing the commercial problems dis-
cussed above, we explore the problem of Caucasian vs Non-
Caucasian boundary.

Ahmed et. al. combine transfer learning with racial clas-
sification, by introducing new regularisation term based on
the output of pseudo-tasks [1]. However, these psuedo-tasks
must be tailored to the datasets in use. Whilst not directly
comparable, our techniques are less involved and obtain a
greater accuracy boost than the 0.2% achieved here.

2.1. Experimental Set Up

We trained a convolutional neural network (CNN) to
classify race over a dataset of facial images. This model is
then applied to an unseen domain/dataset (i.e. different fa-
cial datasets), thus testing the models ability to learn a gen-
eralised concept of race. We consider two facial datasets,
the Celeb Faces Attributes Dataset (CelebA) [13] and the
University of Tennessee, Knoxville Face Dataset (UTK-
Face) [27]. These provide a controlled set of images which
are racially diverse (in the case of the UKTFace, the dataset
is annotated by race) but ensure individuals and their fea-
tures are clearly visible. We choose the UKTFace dataset
as the source domain and the CelebA dataset as the target
domain.

The UKTFace dataset contains over 20,000 face images
with annotations of age, gender, and race. Race is cate-
gorised into five categories: White, Black, Asian, Indian
and Others. For our classification tasks, this is reduced to
two categories (White, Other) with a data split of (8373,
11386) respectively.

The CelebA dataset consists of over 200,000 face images
of predominately Western celebrities. Each image comes
with over 40 attributions (Age, Facial Hair, Hair Colour,
Hair Style). Similar to UKTFace, images cover a large vari-
ation in pose, facial expression, illumination and occlusion.

However images are not annotated by race. We note the
CelebA dataset consists of individuals of different race, yet
similar skin-tone (potentially due to industry beauty stan-
dards). To establish a ground truth, a set of 2500 images
were annotated by two researchers, this set was further split
into a training set (2000 images) and a validation set (500
images).

Figure 1. Samples of the Celeb A dataset (1st and 2nd) and UTK-
Face dataset (3rd and 4th Row)

Given the relatively small dataset, pre-trained neural net-
works are used for feature extraction. The extracted features
are then fed into a Multi-layer Perceptron (MLP) consisting
of 3 dense layers of 64 neurons, followed by a single out-
put neuron. A ReLU activation function is used within the
first layer and a Sigmoid function is used for the latter. We
implemented a dropout = 0.5, a binary cross entropy loss
function and use the Adam optimiser with learning rate =
0.001. We tested on 4 major architectures: ResNet50 [5],
VGGFace [15], VGG16 and VGG19 [22]. The MLP is
trained for 30 epochs with batch size 128.

For a benchmark comparison, we evaluate a model
trained within the target domain - that is to say, a model
which is trained and tested purely on the annotated CelebA
dataset (Train:2000, Valid:500).

2.2. Transfer Learning Techniques

To improve our score we employed a series of Transfer
Learning techniques found within multiple papers [11, 21].

Fine Tuning Networks - In order to improve feature ex-
traction, the last 5 layers of the model were unfrozen (ap-
proximately 30% of the model). Compared to initial train-
ing, a lower learning rate is chosen during this training.



Weights were also initialised from the values obtained from
initial training.

Data Augmentation - To bring the domains closer to-
gether, a number of transformations are applied. Using the
OpenFace library, we cropped all images to only show the
face, aligning the crop with the ears and chin of an image.
Images were also scaled to be the same size as the UTK-
Face counterparts (200 x 200). Example of transforms are
presented by Figure 2.

Figure 2. Samples of images augmented by our techniques.

Further transforms included zoom, sheer and randomised
shuffling. This was motivated to introduce variety to data,
and to mimic the distortions within the CelebA dataset. We
note that whilst augmentations can reduce the photorealism
of images, the race of an individual was not obfuscated.

Optimiser Choice - The optimiser chosen for a model
contributes largely to when a model converges and in which
local minimum (of the loss function) this occurs. Models
which perform poorly fall into minima which fail to encap-
sulate a generalisable understanding of race. We explored
different optimisers, for tuning and fine-tuning. We con-
sider three optimisers: Adam [10], Stochastic Gradient De-
scent[18] and RMSprop [6].

Finally, for an accurate benchmark, we compare our aug-
mented model with the corresponding model trained purely
on the target domain, the CelebA dataset (Train: 2,000,
Valid: 500).

2.3. Results

We report accuracy for our models on both the source
and target domain. Motivated by the number of techniques
to implement, we choose to optimise over individual param-
eters one at a time. This is similar to co-ordinate descent,
where all other variables are frozen, whilst a single variable
is optimsied. Multiple repeats (n = 5) were conducted and
the average scores reported.

We report untuned and fine-tuned architecture’s per-
formance upon test sets in source (UKTFace) and target

Model Source Target
ResNet 50 (Tuned) 0.751 0.362
ResNet 50 (Fine Tuned) 1.00 0.386
VGG16 (Tuned) 0.781 0.421
VGG 16 (Fine Tuned) 1.00 0.453
VGG19 (Tuned) 0.823 0.383
VGG19 (Fine Tuned) 1.00 0.402
VGGFace (Tuned) 0.840 0.452
VGG Face (Fine Tuned) 1.00 0.482

Table 1. Reported accuracy for off-the-shelf and fine-tuned mod-
els.

(CelebA) domains (see Table 1). As expected, the mod-
els perform badly, not only in the target domain but also the
source domain. We note that even when models are fine-
tuned, performance only improved in the source domain
whilst performance dropped on the target domain. This sug-
gests that fine-tuning models results in over-fitting.

Model Unaugmented Agumented
ResNet 50 1.00/0.386 1.00/0.582
VGG16 1.00/0.453 1.000.678
VGG19 1.00/0.402 1.00/0.621
VGGFace 1.00/0.482 1.000.681

Table 2. The effects of data-augmentation over a model. We report
the Source/Target Domain accuracy.

We next applied data augmentation, presenting our re-
sults in Table 2. This technique increases the models accu-
racy on the CelebA dataset and in particular the VGG Face
makes the largest improvements. From these initial results,
we chose to use the VGGFace architecture for the rest of
this paper.

Optimiser Loss Accuracy Time
Adam/Adam 0.453 0.681 24
Adam/SGD 0.446 0.721 26
RMSprop/SGD 0.291 0.910 45
SGD/RMSprop 0.311 0.871 44

Table 3. Results for different optimisers. Time is measured in
Epochs till Convergence.

We report differing performance based on the optimiser
used. For all prior experiments, the Adam optimiser was
utilised. Furthermore, we also report the number of epochs
till these models converge. We present out findings in Table
3.

We finally report the performance of in-domain trained
models (e.g. both source and target domain are the same)
against our out-of-domain trained model. Our results are
presented in Table 4. The target domain model scored 0.83



on the validation set, whilst our transfer learning model
achieves 0.91. This crucially demonstrates that whilst from
initial findings, racial classifiers fail to obtain generaliable
concepts of race - employing transfer learning methods re-
sults in models with better performance scores and thus a
more generalised concept of race.

Model Source Target
Benchmark 1.00 0.83
Baseline 0.840 0.452
Tuned 1.00 0.482
Tuned + DataAugmentation 1.00 0.621
Tuned + PreProcessing + Optimisers 1.00 0.91

Table 4. Models trained in different domains outperforms those
trained in the target domain. Benchmark refers to a model trained
in the target domain whilst Baseline is the vanilla VGGFace net-
work.

3. Image Synthesis
Our second task focused upon image synthesis from

Generative Adversarial Networks (GANs). We test the cur-
rent state of the art solution for photorealistic image gen-
eration, the StarGAN network, and its ability to generate
synthesised images across domain [3].

We explore the importance of a racially balanced dataset
for such a task, or more specifically ’Is race a characteris-
tic to distinguish transfer learning domains?’. We evaluate
how a model, which is trained to conduct image synthe-
sis upon a dataset of a specific race (source domain), per-
forms when applying the same synthesis on a dataset of an-
other race (target domain). Performance is evaluated by the
photo-realism of generated images.

Note that both domains may be within the same dataset
(e.g. the CelebA dataset). If race were a trivial distinction,
performance would be unaffected by which set we use to
train on; our goal is to demonstrate this is not the case. To
our knowledge there is no literature on cross-domain ap-
plication of GANs. Although GANs have been used to help
train cross-domain classifiers [25], we believe this is a novel
study.

3.1. Dataset

We chose to utilise the CelebA dataset for its wide range
of labels, which allow for multiple permutations of images
by facial feature synthesis. In addition, the performance of
the StarGAN architecture is well reported on the CelebA
dataset.

From work demonstrated in Section 2 and further hu-
man annotation, we segmented the CelebA dataset into two
distinct subsets: CelabC - a strictly caucasian dataset and
CelebO - containing all other races (140638, 56375 en-
tries respectively). Given the prominence of individuals

within the CelebA dataset, annotations were easily verified
(by image search) and any contentious cases were placed
in CelebO. Example of contentious images are provided in
Figure 3.

Figure 3. Samples of contentious images, placed in Celeb-O

3.2. Image Generation

GANs are composed of two competing neural networks:
a Generator G, which creates images and a Discriminator
D, a network which classifies if the image is real or fake.
Both components are trained together, optimising to out-
perform each other and thus producing a photorealistic gen-
erator.

In the StarGAN architecture, the Generator is a func-
tion of an initial image and an attribute vector, with the
goal to synthesise the image with a desired facial feature
(or attribute). This image is then passed to a Discriminator
which learns to distinguish real and fake images and predict
the augmented feature.

The architecture has the ability to have multiple at-
tributes/labels. We choose to apply synthesis over single
attributes, synthesing new images with changed age, facial
hair, hair colour or hair style. The architecture currently
stands as state of the art for the photorealism it achieves.
This is in particular due to the introduction of a Reconstruc-
tion Loss, in addition to the vanilla domain classification
loss. For the purpose of our experiments, we wish to lever-
age the photorealistic capabilities of the StarGAN to high-
light performance drops on facial synthesis technologies on
minority groups.

3.3. Training

Models were trained for over 20 epochs with a batch size
16 and 200,000 iterations per image. Models were trained
with the Adam optimiser with β1 = 0.5 and β2 = 0.999.
All images were cropped to a size of 178 x 178 and a learn-
ing rate of 0.0001 was used for both generator and discrim-
inator. We performed one generator update for every five
discriminator updates. A model’s training phase was com-
pleted within 26 hours. This process was repeated with
5 different random initialisations and all generated images
were collected.



Figure 4. Images synthesis from the CelebC and CelebO datasets (Top/Bottom resp.)

3.4. Evaluation

For testing, two output sets were produced. These sets
contain images which are generated with a set of features
(e.g. Hair Colour and Age) changed from an original image.
The first set of outputs is generated from an unseen por-
tion of the CelebC dataset (in-domain), whilst the second is
generated from the CelebO dataset (out-domain). All our
experiments were conducted using the model output from
images unseen during the training phase. To evaluate the
performance we explore both qualitative and quantitative
evaluation.

Qualitative - Figure 4 shows a sample of the facial at-
tribute transfer on both CelebC and CelebO. Transforms
were least realistic for males from the CelebO dataset. We
postulate that, by examining the two datasets, these indi-
viduals have the least physical resemblance to members of
the CelebC dataset. Based on this, it appears comparison
women fare significantly better.

Quantitative - A series of double blind test was applied
with a group of participants 1. Given a pair of images (one
from each output set), participants were instructed to choose
the best generated image based on perceptual realism, qual-
ity of transfer in attribute(s), and preservation of the identity
of the original figure. Our study was taken by 3 participants
viewing a total of 300 pairs each. Given our qualitative eval-

1This experiment was conducted with the approval of Cambridge Com-
puter Science Ethics Committee

uation we also controlled for gender within each image.

Gender CelebC CelebO
Male 60% 40%

Female 53% 47%

Table 5. Results for quantitative valuation. Each row sums to
100%

From this, we found the model performed worse on
Celeb-O dataset, and thus performed worse on non-
caucasian faces, agreeing with the qualitative observations.
We believe it is clear that the photo-realism of the fake im-
ages is worsened when applied to images from a different
race.

4. Discussion
The results presented in this paper contribute to under-

standing if race can be considered a problem of transfer
learning. In the case where this has been proven true, the
effect of an unbalanced dataset become cruical. Such a fact
could be considered a priori true given the large data depen-
dency of machine learning. However, our study highlights
a tangible evaluation of how poorly these models will per-
form in said scenario, for those specific underrepresented
subgroups.

For Section 3, we acknowledge that the results of the
study will adopt the biases of the participants involved. As



shown by Johnston et al. [9], humans process familiar and
unfamiliar faces differently. Thus, we postulate that the syn-
thesised image of a familiar face vs unfamiliar is also pro-
cessed differently and could alter the photorealistism per-
cieved by candidates.

This bias becomes more apparent when, through an addi-
tional questionnaire, participants reported they were aware
of 85% of all celebrities listed in the CelebC but only 65%
of all those listed in the CelebO dataset. This suggests that
the reported discrepancy in photorealism would be larger
in a commercial setting (with less famous users). Thus, we
consider our results to be a lower-bound on the performance
difference between image synthesis over different races.

With the problem well defined, we now consider poten-
tial solutions. As aforementioned, a common suggestion is
selectively subsampling larger datasets to create a balanced
training set. Whilst we report strong results on such classi-
fiers in Section 2, the level of hyperparameter optimisation
between differing datasets is intensive, bringing the com-
mercial viability into question. We posit that further work
is required before for such a class of solution is viable.

5. Conclusion

In conclusion, we provide three main contributions
within this paper. We firstly highlight effective techniques
to improve racial classifiers of facial images. These tech-
niques produce a model which, whilst trained in a separate
domain, scores higher than benchmarks trained in the same
domain. This demonstrates the effectiveness of transfer
learning in problems of race classification. It also highlights
the difficulty within subsampling racially diverse datasets
from large unbalanced datasets.

We secondly produce new annotations for the CelebA
dataset, a set of 200,000 images with with an additional la-
bel (Race). Thirdly, we demonstrate that race plays a signif-
icant factor in a generative models’ ability to produce photo-
realistic images.

We note that race is a difficult characteristic to iden-
tify in a cross-domain learning environment. Although the
results from our first experiment are significant improve-
ments, model performance scores are still poor. Similarly,
we believe that our second experiment further highlights
the real distinction race can play in image generation. We
hope that this study can further highlight the importance of
racially diverse data to those utilising biometric technolo-
gies
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